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The impulsively starting motion of a small circular cylinder submerged horizontally 
below a free surface is studied analytically using a small-time expansion. The cylinder 
is considered small if the ratio between its radius and initial submergence depth is 
much smaller than one. The surface elevation is calculated up to third order. The 
hydrodynamic force on the small cylinder is also discussed. Certain inconsistencies in 
our small-cylinder approximation (assuming locally uniform flow around the cylinder) 
are found in the force prediction. The present work is an accompanying paper to 
Tyvand & Miloh (1995), where the same problem is studied for arbitrary radius versus 
submergence depth. 

1. Introduction 
Havelock (1949) performed the first study of a submerged circular cylinder starting 

from rest near a free surface. He investigated the full time evolution of the free surface, 
based on linear theory. Tuck (1965) carried this type of analysis into the nonlinear 
regime. 

The present work complements the earlier analytical approach to Havelock’s 
problem : we investigate the short-time evolution of the full nonlinear initial/boundary 
value problem, applying a small-time expansion (Peregrine 1972). In a paper written in 
parallel with the present one (Tyvand & Miloh 1995, hereafter referred to as TM) we 
develop an exact theory for arbitrary cylinder size, and solve the problem in terms of 
Fourier expansions in bipolar coordinates. In the present paper, simple formulae for 
the small-cylinder limit are derived, based on the hypothesis of uniform local flow 
around the cylinder. The small-cylinder limit is the leading order of an expansion with 
respect to a parameter assumed much smaller than one: the ratio between the cylinder 
radius and its initial submergence depth. 

The full initial/boundary value problem for an impulsively started submerged 
cylinder has been studied numerically by Haussling & Coleman (1979), Telste (1987), 
Greenhow (1988,1993) and Terent’ev (1991). Greenhow & Lin (1983) have investigated 
the present problem experimentally for the case of vertical motion. 

2. Mathematical problem 
We consider a solid circular cylinder of radius % submerged in an inviscid 

incompressible fluid of infinite depth. At negative times ( t  < 0) everything is at rest, and 
the cylinder centre is located at a distance D below the free surface of the fluid. 
Cartesian coordinates x and y are introduced. The x-axis lies at the undisturbed free 
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I 

FIGURE 1. Definition sketch of the moving cylinder and free surface. 

surface, see figure 1. The y-axis is directed upwards. The gravitational acceleration is 
denoted by g .  The surface elevation is denoted by ~(x, t). We introduce a unit velocity 
W, which is the constant forced velocity of the cylinder. The unit of length is the initial 
submergence depth D. The important dimensionless parameter in the present 
formulation is the Froude number defined by 

W 
(gD)li2'  

Fr = ~ 

We also introduce units of dimensionless time D/ W and pressure pW2, where p is the 
fluid density. The dimensionless cylinder radius is chosen as 

The forced motion starts impulsively from rest at time zero. The flow is governed by 
Laplace's equation 

where @(x, y ,  t )  is the dimensionless velocity potential. The dimensionless boundary 

6 = %ID. (2.2) 

V2@ = 0, (2.3) 

conditions are 

a7 a m 7  a@ 
y = q(x, t),  at axax ay 

-+-- = -, 

The position of the cylinder centre is written as 

R(t) = X(t )  i+ Y(t)j ,  (2.7) 
where i a n d j  are unit vectors in the x- and y-directions, respectively. Our initial 
conditions are chosen as (TM) 

7(x,O) = 0, (2.8) 
@(x, 0,O) = 0. (2.9) 
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We choose pW2 as a reference pressure. The units of dimensionless mass, force and 
momentum (per length along the cylinder) are given by COD2), COD W z )  and pD2 W ) ,  
respectively (see TM). 

3. The small-time expansion 
Our nonlinear initial/boundary value problem is solved analytically by employing a 

small-time expansion (e.g. Peregrine 1972; Greenhow & Lin 1983). We then postulate 
(see TM) 

(@, 7, R) = ( O , O ,  R J  + H(t) [(@n, 0,O) 
+ t(@,, rl, R,) + t2(@,, v2 ,  R,) + . . .] (- co < t < CO). (3.1) 

Here the Heaviside unit step function has been introduced: 

In (3.1) the instantaneous position vector of the cylinder centre is prescribed by its 
H(t) = 0, t < 0 and H(t) = 1, t > 0. ( 3 4  

forced motion : 

where we have already defined 
R ,  = iX,+jYn (n = 0,1,2, ...), (3 * 3) 

(3.4) (x,p Y,) = (0, - 1). 
The governing equations and free-surface boundary conditions are the same as in 

our preceding paper (TM, (3.5k(3.13)). But for the boundary conditions at the 
cylinder contour, our present small-cylinder analysis will be independent of TM. 

By the principle of superposition we may split the potential into two contributions 
at each order, i.e. 

The first term ($,) is generated by the inhomogeneous condition at the free surface with 
zero normal derivative at the cylinder contour. The second term ($,) is generated by 
the inhomogeneous boundary condition at the cylinder contour, with a homogeneous 
condition at the free surface. In the present small-cylinder limit $, will be represented 
by a moving-dipole potential. 

@,=$,+$, (n=O,1 ,2  ,... ). (3.5) 

The small-time expansion for the hydrodynamic force is 

F = F-, 8(t) + (F, + Fl t + F2 t2 + . . .) H(t). (3.6) 
Here 8(t) is Dirac's delta function, which is the derivative of the Heaviside unit step 
function H(t). As in TM we omit the constant hydrostatic force in this series expansion, 
since, unlike the other contributions, it is not turned on at time zero. 

4. On the dipole potential and the surface elevation 
When the ratio of cylinder radius to initial submergence depth (e) is small, there is 

a leading dipole contribution to the zeroth-order potential (see e.g. Batchelor 1967, p. 
424). For a cylinder in unbounded fluid with a general motion prescribed by (2.7), the 
exact potential for the induced fluid flow is 

The non-expanded version of the moving-dipole potential is then given by 
@ = -s".((Y-R))r-RI-2. (4.1) 

Y + Y  ) + 0(~4) .  (4.2) 

1 - x + x  x-x 
$ = &(( + x-xy + ( y  - Y)2 ( x - X ) 2  + ( y  + Y ) 2  

4 Y ( (  Y - y  + 

x - X)Z+ ( y - Y)2 (x- X)2 + ( y + Y)2 
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(a)  (i) E = 0.1, N = 10 

1x1 0 0.25 0.5 1 .o 1.5 3.0 
x lo2 2.000 1.659 0.956 0.002 -0.237 -0.159 

dipole 2 1.661 0.96 0 - 0.237 -0.16 

(ii) E = 0.3, N = 20 

1x1 0 0.25 0.5 1 .o 1.5 3.0 
?/I x 10 1.799 1.481 0.834 0.020 -0.217 -0.139 
dipole 1.8 1.495 0.864 0 -0.213 -0.144 

(b)  (i) E = 0.1, N = 10 

X 0 0.25 0.5 1 .o 1.5 3.0 
x lo2 0 0.888 1.281 0.997 0.566 0.119 

dipole 0 0.886 1.28 1 0.568 0.12 

X 0 0.25 0.5 1 .o 1.5 3.0 

dipole 0 0.797 1.152 0.9 0.51 1 0.108 

TABLE 1. First-order surface elevation. Exact Fourier series solution (4.6) is truncated after N terms. 
Comparisons are made with the surface elevation in the small-cylinder limit (dipole solution (4.5)). 
(a) Vertical motion: a = in, (b) horizontal motion: a = 0. 

(ii) B = 0.3, N = 20 

71 x 10 0 0.811 1.156 0.878 0.490 0.102 

This potential can be expanded by introducing the power series X(t )  and Y(t) for the 
forced motion. Equation (4.2) is derived from (4.1) by adding appropriate image 
potentials in order to satisfy the homogeneous boundary condition @ = 0 at y = 0. 
Equation (4.2) has been proven to be consistent with the higher-order boundary 
conditions at the cylinder contour in our preceding paper (TM, (3.19k(3.22)). 

All higher-order elevations due to the forced motion of the cylinder are included in 
the following expression : 

(x-X) Y 
((x - X)2 + Y 2)2 

*(X, 0) = -4€2x 
aY 

2 Y2 )+O(€”. (4.3) +2€2Y( 
((x-X)2+ Y y ( x - X ) 2 +  Y2 

The zeroth-order small-cylinder solution is constructed by putting t = 0 in the moving- 
dipole potential (4.2). 

Our following analysis will be restricted to the realm of the small-time expansion. We 
introduce the angle a between the velocity vector and the x-axis (measured in the 
counter-clockwise direction) : 

The first-order elevation generated by the dipole potential (4.2) is 
XI = cos a ,  & = sina. (4.4) 

X 1 -x2 
?Il = 4€%- + 2 € 2 & - - -  

(x2 + 1)2 ’ (x2 + 1)2 (4.5) 

The first-order elevation is written here as a sum of two terms: first the contribution 
due to the horizontal motion, which is antisymmetric about the y-axis and has a 
maximum at x = 0.5774 (= 1/2/3); secondly, the contribution due to the vertical 
motion, which changes sign at x = 1. 

The first-order surface elevation usually differs from the exact solution by less than 
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0.3 YO when e < 0.1. See tables 1 (a) and 1 (b), where comparisons with the exact theory 
(TM) are made. When e = 0.3 the dipole approximation typically leads to deviations 
of order 3 YO from the exact solution. The dipole solution begins to fail when e exceeds 
0.5, and when e > 0.8 it makes no sense at all. These conclusions are about the same 
for higher-order solutions, although there is a tendency for greater deviations from the 
small-cylinder limit solution. The exact first-order elevation is derived in TM (8 5 )  in 
terms of bipolar coordinates. We rewrite it here explicitly in Cartesian coordinates : 

4(1-2) C (- l)n+l n exp ( - n arcsech e) 
7l = x2+ 1 -eZn-,  

X 
x sech (n arcsech e) sin 2n arctan , ,,, +a] . (4.6) 

(1-6) 
We will now study the first-order potential in the small-cylinder limit. It is given by 

the inhomogeneous boundary condition (TM, (3.9)) 

(4 .7~)  $h,(x, 0) = -;T/; = -___ [a, x2 + a,( 1 - x2)' + a, x( 1 - x')], 

(4.7b) 
where 

a, = 8cos2a, a, = 2sin2a, a, = 4sin2a. 
Instead of solving the higher-order problems by residue calculus, we introduce two 
classes of harmonic functions defined at the boundary : 

e4 

(xz + 114 

fm(x, 0) = (2 + l)-m (m = 1,2, . . .), 
g,(x, 0) = x(xz + l)-m (m = 1 , 2, . . .). 

(4.8) 
(4-9) 

In the Appendix these functions are derived for m < 5.  
The first-order potential (4.7) can be written as a sum of these functions: 

$h,h 0) = e4[al( -f,  + f 4 )  + a,(-f, + 4f3 - 4f4) + a3k3 -2g4)lY=,,. (4.10) 
After applying the relationships in the Appendix, we end up with the small-cylinder 
limit of the second-order elevation due to the convective acceleration at the free 
surface : 

+ 2 sin 2a ( - g, + 12g4 - 1 6g5)],=,. (4.1 1) 
The term in the last parentheses represents the leading-order nonlinear hydrodynamic 
interaction between the horizontal and vertical motion. At x = 0 (4.1 1) reduces to 

(4.12) 

The leading nonlinear hydrodynamic effect at the free surface reduces the height of the 
surface mound in the case of vertical motion. When the cylinder is moved horizontally, 
one effect of the convective acceleration is to increase the size of the surface trough and 
reduce the size of the surface crest. The second-order surface elevation due to the 
nonlinear effects at the free surface has an amplitude about twice as large for vertical 
motion as for horizontal motion. 

By expanding (4.3) we find the contribution to the second-order elevation due to the 
moving dipole : 

1. (4.13) 
4X, x + 2 &( 1 - x2) ( 3 9  - 1) cos 2a + x(3 -2) sin a 

(xz+ 113 
+2  -- a$1 (x, 0) = 2 

2 aY 



108 P. A .  Tyvand and T. Miloh 

1x1 
q2 x lo2 
asymptotic 

1x1 
92 x 10 
asymptotic 

1x1 
v2 x lo2 
asymptotic 

1x1 
92 x 10 
asymptotic 

X 

T2  x lo2 

T 2  x lo2 

asymptotic 
X 

asymptotic 

X 

7 2  x 10 

92 x 10 

asymptotic 
X 

asymptotic 

0 
1.963 
1.973 

0 
1.501 
1.577 

0 
- 1.983 
- 1.988 

0 
- 1.657 
- 1.699 

- 3.0 
-0.037 
- 0.036 

-0.010 
-0.008 

0 

- 3.0 
0.038 
0.035 
0 

-0.078 
-0.061 

0.25 
1.336 
1.343 

0.25 
1.069 
1.128 

0.25 
- 1.352 
- 1.354 

0.25 
-1.190 
- 1.216 

- 1.5 
-0.063 
-0.065 

0.25 
1.197 
1.203 

- 1.5 
-0.045 
-0.058 

0.25 
0.880 
0.927 

(a)  (i) B = 0.1 

0.5 
0.259 
0.262 

(ii) E = 0.3 

0.5 
0.254 
0.279 

(b)  (i) B = 0.1 

0.5 
-0.265 
-0.266 

(ii) B = 0.3 

0.5 
-0.302 
-0.308 

(c) (i) B = 0.1 

- 1.0 
- 0.499 
-0.501 

0.5 
1.392 
1.398 

(ii) E = 0.3 

- 1.0 
-0.439 
-0.460 

0.5 
1.264 
1.184 

1 .o 1.5 
-0.495 -0.333 
- 0.496 -0.334 

1 .o 1.5 
-0.408 -0.282 
-0.420 -0.294 

1 .o 1.5 
0.499 0.337 
0.499 0.336 

1 .o 1.5 
0.440 0.315 
0.440 0.312 

-0.5 -0.25 
- 1.398 - 1.212 
- 1.401 - 1.214 

1 .o 1.5 
0.503 0.067 
0.504 0.068 

-0.5 -0.25 
- 1.188 - 1.001 
-1.214 - 1.015 

1 .o 1.5 
0.470 0.068 
0.480 0.077 

TABLE 2. Second-order surface elevation : v2(x) = t (a@,i3y),+ Exact Fourier ~ 

(4.15)+(4.16) is truncated after 10 terms in both n and rn. Comparisons are made with our small- 
cylinder asymptotic solution (4.1 1) + (4.13). (a)  Vertical motion: a = $; (b) horizontal motion CL = 0; 
(c)  oblique motion a = in. 

3.0 
-0.051 
-0.052 

3.0 
-0.041 
-0.047 

3.0 
0.052 
0.052 

3.0 
0.051 
0.050 

3.0 
-0.036 
-0.036 

3.0 
- 0.029 
-0.030 

series solution 

Here we have introduced the angle a defined by (4.4). The total second-order elevation 
is the sum of the two terms (4.11) and (4.13). Equation (4.13) represents the leading- 
order ' geometric nonlinearity ', due to the cylinder centre being displaced from its 
initial position as soon as a finite time has passed since the start. For small cylinders 
it dominates over the hydrodynamic nonlinearity at the free surface (4.1 l), because it 
is of two orders lower in c. 

Let us discuss the case of constant upward vertical velocity (a = in), where (4.13) 
simplifies to 

(1  - 3x2) 
(xz+  1 1 3 .  

-- (x, 0) = 2c2 
2 aY 

(4.14) 

We note that geometric nonlinearity increases the size of the surface mound, and it 
displaces the point of zero surface elevation below 1x1 = 1 .  Both these effects are 
opposite to the leading-order effects of hydrodynamic nonlinearity, i.e. convective 
acceleration at the free surface. The first-order amplitude is known to be larger the 
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closer a given cylinder is to the free surface. Thus it is clear that the surface amplitude 
above the cylinder must be increased due to geometric nonlinearity, since this effect 
accounts for the basic fact that the cylinder is displaced towards the free surface: the 
first-order elevation alone pretends that the cylinder contour is at rest, 'pumping' a 
normal flow into the lower half and out through the upper half of the fixed contour. 

In the case of a constant horizontal velocity (a = 0), the second-order elevation due 
to the moving dipole is minus that for vertical motion (4.14). In this case the geometric 
nonlinearity reduces the depth of the surface trough for x < 0 and increases the height 
of the surface crest for x > 0. This is opposite to the leading-order effects of 
hydrodynamic nonlinearity at the free surface. The best way to interpret this case is to 
note that geometric nonlinearity displaces the total crest/trough pattern to the right. 
It also tends to make the surface trough wider and more shallow, while the crest 
becomes narrower and steeper. 

In tables 2(a)-2(c) the sum of (4.1 1) and (4.13) is compared with the exact solution 
(for constant speed) derived in TM ($7): the exact second-order elevation is the sum 
of the following two contributions, rewritten in Cartesian coordinates : 

W o o  

--(x,O) 1 Wl = -e2)1'2 C C (- l)"+%rn exp [ - ( n  + m) arcsech e] 
2 a Y  16(x2 + 1 -2) n=l m=l 

x sech (n arcsech e) sech (rn arcsech e) 

x C (24-9k2+k4) C q(n+qm+k) 
2 1 

k=-2 q=-1 

X 
2(n + qm + k )  arctan , l i2  + (q  + 1) a]  

(1-e 1 
x tanh [(n + qm + k)  arcsech el, 

W 

x C (- 1)"n exp (- n arcsech c) sech ( n  arcsech e )  
n=l 

X 

(4.15) 

1) arcsech e] 

1 X 
2n arctan (1-e) l i2  +a tanh ( n  arcsech e) 

1 X 
2(n + 1) arctan 

lj2 
+ a tanh [(n + 1) arcsech €1 

(1-e 1 
2cosa * - C (- 1)" n exp (- n arcsech e) sech (n arcsech e) 

x2 + (1 - €2)1/2 n=l 

X 
sin 2narctan ,,,+a) [ ( (1 -€2)1/2 (1-€1 

X 2 +  1-e2 1 -e2  i (1-e) 
X 

x sin 2arctan 

cos 2n arctan l i2  + a ) ] .  - 2n (4.16) 
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We have performed separate comparisons for hydrodynamic nonlinearity ((4.15) us. 
(4.1 1)) and geometric nonlinearity ((4.16) vs. (4.13)). These comparisons are similar, so 
we present only their sums in table 2. 

The leading-order gravitational effect (superscript Fr) in the small-cylinder limit is 
found by combining (TM (3.10)) and (4.5): 

(4.17) 

In the Appendix these three harmonic functions g, ,  f ,  and f 2  are derived. 

third-order elevation : 
The relationships derived in the Appendix also give the gravitational effect on the 

(4.18) 

Here we have applied the kinematic condition (TM (3.14)). We note the expected result 
(for vertical motion) that the leading-order gravitational effect gives negative surface 
elevation near x = 0, corresponding to outward radiation of gravity waves. We do not 
compare the small-cylinder expression (4.18) with the exact formula in TM, because 
such a comparison is implicit in table 2 : the exact expression is proportional to the first 
of the two infinite series occurring in (4.16); the one with the factor (sina). 

5. On the hydrodynamic force 
Below we will see that our present small-cylinder expansion provides a fully 

consistent approximation for the force only in the lowest order (the 'order minus one' 
with the singular &function term). The reason that it may fail at higher orders is that 
the assumption of locally uniform flow around the cylinder is too crude for some of the 
force contributions, no matter how small the cylinder is. However, our small-cylinder 
expansion is consistent for the surface elevation to any order, as demonstrated in tables 
1 and 2. 

The dipole solution itself disregards all feedback from the free surface on the local 
zeroth-order flow around the cylinder. However, there is one feedback effect that 
influences the leading-order modification of the flow surrounding the cylinder, which 
is given by (regarded as locally uniform) 

-R,(l - $ E 2 ) .  

The correction term - ie2  for the relative flow is composed of two equal contributions: 
(i) due to the flow generated by the image cylinder (its infinite-fluid dipole moment); 
(ii) the other due to the image-induced (feedback) modification of the local dipole 
moment of the cylinder, and thereby of its self-induced flow. The inclusion of this 
feedback correction is necessary to satisfy the boundary condition at the cylinder 
contour. We generalize this result to also apply for an arbitrary cylinder position: 

The physical meaning of this expression is as follows: U represents the instantaneous 
surrounding flow field experienced by a small cylinder, in the infinite Froude number 
(vanishing gravity) limit, provided no significant nonlinear free-surface effects have 
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8 
0.2 0.4 0.6 0.8 1 .o 

o.6 0.5 t . . 
\ 

FIGURE 2. Impulse force on the cylinder, divided by infinite-fluid added mass, given as a function of 
the cylinder radius. Solid curve : exact formula (5.6). Dashed curve : three-term asymptotic expansion 
(5.5). Dotted curve: two-term asymptotic expansion (5.4). 

been accumulated since the motion was started impulsively. The time derivative of (5.1) 
reads 

d U  d2R 2 dYdR 
dt 

To obtain a force estimate, we have to multiply this acceleration with the mass of the 
fluid displaced by the cylinder. This force is the hydrodynamic force expected to be 
experienced by a deeply submerged cylinder in very rapid motion (the infinite Froude- 
number limit). However, it will be shown below that this small-cylinder theory is never 
fully consistent with respect to the force. Therefore we will refrain from discussing (5.2) 
further in its general form. Such a discussion has been given by Greenhow (1988, 
equation l), for the case of vertical motion. But (5.2) is in principle incorrect as a basis 
for calculating the force, except during the impulsive start itself. However, it Ieads to 
only small errors when the motion is vertical. 

Let us expand in powers of time the added-mass force due to the time derivative of 
the relative flow surrounding the cylinder, according to (5.2) : 

(5.3) 
The superscript dipole is meant to indicate that this force only takes into account the 
dipole solution (modified by a zero-potential free-surface condition), not the 
nonlinear interaction with the free surface. 

FdipoZe) / (~e2)  = -(R16(t)+2Rz)(1 - - t ~ . ” ) + H ( t ) ( ~ ~ q  Rl+O(t)) .  

Using (5.3) we derive the following dipole approximation: 

F-J(Z2) = - (1 -y) R,, (5.4) 
which is asymptotically valid for B + 0, and can also be easily deduced from the analysis 
of Milne-Thomson (1968). However, we carry the asymptotic expansion (5.4) one step 
further by extending our argument preceding (5.2). Considering the infinite-fluid dipole 
moment at the cylinder location as unity, it will induce a unit image dipole. This image 
dipole again induces an upward surrounding flow of i.2 around the cylinder. However, 
this gives a feedback reduction of the unit dipole moment to (1-+2). This again 
reduces the image dipole moment to (1 -it?), so its upward flow generated around the 
cylinder is reduced to 4e2-&e4. This gives a second feedback modification of the unit 
dipole moment to (1 - a 2  +&e4), which represents the self-induced relative flow. 
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Adding the (downward) self-induced and the (upward) image-induced relative flows we 
find that the total (downward) surrounding flow experienced by the cylinder is 
(1 -fez ++c4). In terms of added-mass force this can be written 

(5.5) 

For all e < 0.5 the graphical representation of (5.5) follows very closely the exact curve 
(TM, §6), which can be expressed by 

a, 

F-, = - 47cR1( 1 - 2) 2 n exp (- 2n arcsech e)  tanh (n arcsech e). (5.6) 
n=l 

In figure 2 this exact formula is displayed, together with the three-term, ( 5 9 ,  and two- 
term, (5.4), asymptotic expansions for small E .  Equivalent exact formulae for the 
impulsive force (5.6) have earlier been derived by Venkatesan (1985) and Greenhow & 
Li (1987). 

From the expressions in the Appendix we find the first-order velocities at the cylinder 
location induced by the leading-order convective acceleration at the free surface : 

Wl 
~ (0, - 1) = - fc4 sin 201, 
ax 

Wl -(O, - 1) = f.4 (cos2a-2). 
aY 

(5.74 

(5.7b) 

These expressions gives the leading-order nonlinear free-surface effects on the induced 
flow at the cylinder location. Equation (5.7a) shows that the horizontal flow 
component arises due to nonlinear interaction between the zeroth-order horizontal and 
vertical flows. This induced horizontal flow has its maximum when the initial velocity 
vector makes an angle of $IT with each coordinate axis. This is no such interaction effect 
on the vertical flow. Equation (5.7 b) shows that nonlinear free-surface effects always 
give a downward flow. The magnitude of the downward flow has its minimum when 
the motion is horizontal, and reaches its maximum (three times that minimum) when 
the motion is vertical. The magnitude of the downward first-order flow is at least twice 
that of the horizontal first-order flow. 

A basic qualitative question is whether the early nonlinear free-surface effects will 
increase or reduce the hydrodynamic force. Our formulae (5.7) show that the leading- 
order nonlinear effects will increase the magnitude of the surrounding flow velocity 
experienced by the cylinder. This tends to increase the force components. 

We will now investigate the zeroth-order force, which is a time-independent force on 
the cylinder. This is the dominating force on the cylinder just after the cylinder has been 
forced impulsively into motion. The total zeroth-order force for constant speed 
(X, = Y, = 0) can be written (see TM, $8): 

F, = p u n )  + p - e e )  + ~ p o m ) .  

The zeroth-order force is the sum of three different effects: (i) the dynamic-pressure 
effect (superscript dyn) due to the zeroth-order tangential flow along the cylinder 
contour; (ii) the first-order flow due to the leading-order nonlinear effects of the 
convective acceleration at the free surface (superscript free) ; (iii) the geometric 
nonlinearity in the first-order flow (superscript georn), accounting for the fact that the 
cylinder centre is being displaced out from its initial position at any finite time since the 
start. 

(5.8) 0 0 
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The first term in (5.8) will have asymptotic limit zero, according to our hypothesis 
of uniform local flow around the cylinder, since the dynamic pressures balance each 
other on each side of the cylinder. But the exact theory of TM shows that this force is 
of order e4 when the cylinder radius e is small. 

From (5.7) we derive the following expression which may only be valid 
asymptotically in the small-cylinder limit : 

FIfree)/(m2) - +e4 [ - i sin 2a + j  (cos 2a - 2)]. (5.9) 
In TM 58 we confirm that this is indeed the correct small-cylinder limit for the 

second term in (5.8). However, it is of smaller order of magnitude than the first term 
in (5.8). Thus we cannot find a consistent small-cylinder limit for the total force with 
our present type of small-cylinder approximation. 

With our hypothesis of uniform local flow around the cylinder, (5.3) gives the 
present small-cylinder approximation for the third term in (5.8) : 

Fipeom)/(m2) - e2R, sin a = ;e2 [isin 201 +j( 1 - cos 2a)l. (5.10) 

There is an inherent inconsistency in the prediction (5.10) itself. To understand this, we 
follow TM (Appendix B) and split the zeroth-order force due to the geometric 
nonlinearity into two contributions : 

(5.11) 

In our context, the first of these force contributions arises because the cylinder convects 
its surrounding dipole field (including its image) into a new location. This term alone 
is in full agreement with our small-cylinder prediction (5.10). The second contribution 
in (5.11) accounts for the fact that the cylinder penetrates a finite distance into the 
initial flow field (that continues to operate, as it is steadily building up the first-order 
elevation). This ‘penetration’ effect is lost completely in our small-cylinder ap- 
proximation, and this is the cause of the inconsistency. TM shows that this second 
term in (5.11) is of the same order of magnitude as the first term (except that it is zero 
for purely vertical motion). Thus our force prediction (5.10) is an inconsistent small- 
cylinder limit. 

The leading gravitational effects on the hydrodynamic force are specified by linear 
theory. So the principle of super-position is valid for the gravitational surface elevation 
and force when the cylinder performs an oblique motion. The gravitational flow 
generated at the cylinder location is 

f? cos a 
(0, - 1) = -~ 

agkFr)  

ax 4Fr2 ’ 

e2 sin 01 
(0, - 1) = -~ 

ag:Fr) 
aY 4Fr2 

(5.12a) 

(5.12b) 

Thus the leading-order gravitational effect gives a positive contribution to the 
magnitude of the relative flow surrounding the cylinder. This contribution grows as a 
quadratic function of time. It gives a gravitational hydrodynamic force that grows 
linearly with time, because a basic force-generating mechanism in the small-cylinder 
limit is the time derivative of the relative flow, (5.2). This gravitational force 
contribution points in the direction opposite to the forced initial motion of the 
cylinder. It is given by 

FlFr)/(.ne2) = - (e2/Fr2) R,. (5.13) 
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The second-order gravitational flow (5.12) increases the effective surrounding flow 
experienced by the cylinder. This causes a feedback increment of the dipole moment of 
the cylinder (necessary to satisfy the boundary condition at its contour), which again 
increases the effective surrounding flow by the same amount as that given by (5.12). 
Because of time differentiation, the flow amplitude occurring on the right-hand side in 
(5.13) becomes four times that of (5.12). 

6. Summary 
A small-time expansion has been performed for the unsteady nonlinear free-surface 

flow generated by the forced motion of a circular cylinder being impulsively started 
from rest. The surface elevation and the hydrodynamic force are calculated in the three 
lowest orders of the expansion, according to our small-cylinder limit where the flow is 
taken to be locally uniform around the cylinder. In our tables 1 and 2 comparisons are 
made with the exact surface elevation (TM), showing good agreement when the 
dimensionless cylinder radius is 0.3 or smaller. 

Both the initial added-momentum force and the leading gravitational force are 
vectors pointing in a direction opposite to the motion of the cylinder. Thus reversing 
the direction of motion means reversing these forces. As a contrast, the steady (zeroth- 
order) force is unchanged when the direction of motion is reversed. The steady 
hydrodynamic force is proportional to the square of the velocity, and is purely vertical 
both for horizontal and vertical motion. A horizontal steady force component arises 
only in the case of oblique motion. This force component arises from nonlinear 
interactions between the zeroth-order flows due to horizontal and vertical motion of 
the cylinder. 

The present work is carried out in Cartesian coordinates, but has evolved in parallel 
with the exact theory (TM) given in bipolar coordinates. The present small-cylinder 
limit is useful in checking the more complicated exact formulae of TM. Our present 
approximation for the surface elevation is fully consistent, and all comparisons 
between the exact theory and the small-cylinder limit are given only in the present 
paper and omitted in TM. For more details on a similar comparison for the force 
components, we refer to TM where relevant graphs are displayed. 

Our small-cylinder hypothesis of uniform flow surrounding the cylinder is 
inconsistent with respect to the zeroth-order force. Nevertheless it works for the 
singular impulsive force, as well as for the first-order gravitational force. These 
inconsistencies help us to clarify the different physical effects contributing to the 
zeroth-order force. In TM we identify two distinct effects that are completely lost in our 
small-cylinder approximation : (i) the dynamic-pressure force, and (ii) the finite 
penetration into the initial flow field. These are the roots of the inconsistencies. 

E. E. Leirgul is thanked for drawing figure 1. Dr E. Plahte is thanked for his help 
with computing the tables. 

Appendix. On linear combinations of image multipoles 
For our study of higher-order elevations in the small-cylinder limit it is useful to 

introduce the two following classes of harmonic functions defined at the boundary 
y = o :  

f"(X, 0) = (x2 + 1)-" (m = 1,2, . . .), 
g,(x, 0) = x(x2+ 1)-" (m = 1,2, ...). 

(A 1) 
(A 2) 
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A conventional way to determine these functions is by residue calculus based on 
Poisson's integral formula. But we can find the same information from successive 
differentiations of the point source potential x located in the image point (x, y )  = (0,l) : 

x = ;log(x2+(y-1)2). (A 3) 
These functions are linear combinations of multipoles with their centre in the image 
point (0,l). Immediately we have 

We differentiate each of these functions four successive times with respect to y and get 
the relationships 

(A 6) 

f, = (2-5y-~~y+4y'-y~)/[2(x'+(y- (A 7) 

afz/ay = -21-2f2+44f, (A 8) 

9 (A91 

(A 10) 

= -f, + 2fn 

8 - 33y - 1 2 ~ ' ~  - 3 x 4 ~  + 54y2 + 1 8x2y2 - 44y3 - 6x2y3 + 1 8y4 - 3y5 
8(x2 + ( y - 1)2)3 f 3  = 

af3/ay = -21 -vz - 3 f 3  + 6f> 
f4 = (1 6 - 93y - 4 7 ~ ~ ~  - 23x4y - 5x6y + 232~'  + 144x2y2 + 4Ox4y2 - 3 2 3 ~ ~  - 1 6 2 ~ ' ~ ~  

- 1 5x4y3 + 272y4 + 80x2y4 - 1 39y5 - 1 5x2y5 + 40y6 - 5y7) / [  1 6(x2 + ( y - 1)2)4], (A 1 1) 

a f 4 P Y  = -AL-;fz-f3-4f++f5, (A 12) 

(A 13) 

(A 14) 

(A 15) 

(A 16) 

5 (A 17) 

(A 18) 

agl/ay = 2g2 = 2 4 1  -Y)/(xz+ (Y-  i ) y ,  

@z/ay = -gz + 4g3, 

ag31ay = - 2 2  - 2g3 + 6g4, 

g3 = x(4 - 9y - x2y + 6y2 -y3)/[4(x2 + (y - 

x(8 - 29y - 6x2y - x4y + 40y2 + 8x2y2 - 26y3 - 2x2y3 + 8y4 - y 5 )  
8(x2 + ( y - 1)2)4 g4 = 

ag 4 lay = -kz -;g3 - 3g4 + 8g5. 
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